

pyGFC – A Python Extension to the C++ Geodesy

Foundation Classes

by Binh Q. Nguyen

ARL-TR-4623 September 2008

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TR-4623 September 2008

pyGFC – A Python Extension to the C++ Geodesy
Foundation Classes

Binh Q. Nguyen

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2008
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

FY08
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

pyGFC – A Python Extension to the C++ Geodesy Foundation Classes

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Binh Nguyen

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-CI-NT
2800 Powder Mill Road
Adelphi, MD 20783-1197

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-4623

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes the results of the development of the pyGFC module, including the multi-step procedure and the
implemented computer code. The pyGFC module is a Python extension to the C++ Geodesy Foundation Class, which has
been used in the range model of the Mobile Ad-hoc Network (MANET) Emulation (MANE) software system that enables the
dynamic connectivity of a MANET system in the Wireless Emulation Laboratory of the U.S. Army Research Laboratory
(ARL). The pyGFC module was created to support the visualization of network topologies using the ARL Topodef tool, a
graphical design and animation tool for custom-designing and editing a mobility scenario to create specific network
topologies.

15. SUBJECT TERMS

Python extension, GFC, geodetic distance calculation

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON

Binh Q. Nguyen
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U

17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

26
19b. TELEPHONE NUMBER (Include area code)

301-394-1781

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

1.1 Background ...1

1.2 Scope ...2

1.3 Method...2

2. The pyGFC Module Development 3

2.1 Platform Identification and Tool Versions..3

2.2 Files and Directories..3

2.3 Procedure...4

2.4 Result & Discussion ..6

2.5 Other Development Tools for Creating Python Extensions to C++................................8

3. Summary 9

4. References 10

Appendix A. URL of Development Tools 11

Appendix B. Source Files 13

Disclaimer 18

Distribution List 19

iv

List of Figures

Figure 1. Procedure for creating the pyGFC module..5

Figure 2. Creating the GFC library. ..5

Figure 3. Generating wrapper files. ..6

Figure 4. Compiling the wrapper files. ...6

Figure 5. Creating the shared library. ...6

Figure 6. Results – an interactive session with the pyGFC module. ...8

List of Tables

Table B-1. The pyGFC.h file...13

Table B-2. The pyGFC.cpp file...14

Table B-3. The pyGFC.i file. ...17

1

1. Introduction

1.1 Background

The Wireless Emulation Laboratory (WEL) of the U.S. Army Research Laboratory (ARL) exists
to support research in wireless mobile networks and mobile ad-hoc network (MANET) security
(1) and to demonstrate ARL-developed solutions. A key component of the WEL is an emulation
test bed, which is based on the Mobile Ad-hoc Network (MANET) Emulator (MANE)
architecture that was originally developed by the U.S. Naval Research Laboratory (NRL) (2).
The MANE system consists of hardware and software. The hardware system is a scalable high-
performance network of physical computers. The software system enables the emulation of a
dynamic MANET by managing and executing the effects of mobility on network connectivity.
Effectively it creates virtual network topologies that evolve with time, a dependent variable of
mobility.

Mobility is about changes of the geodetic positions of the participating mobile nodes over a fixed
time interval, i.e., a mobility scenario. The geodetic positions of each node are predetermined,
arranged in ascending order by time, and stored in a log file, which is basically a text file
containing the mobility traces of a mobile node. The log files are usually created off-line using
the ARL Topodef™ tool (3), a graphical system and method for visually creating and editing
specific network topologies of an emulated MANET. A network topology is a snapshot in time
showing the number of participating nodes, their relative geographical positions on the screen,
and their interconnections or communication links. A custom-designed network topology
consists of a predetermined number of nodes being placed at exact locations and a desirable set
of communication links.

A communication link between a pair of any two nodes depends on the range of their equipped
radios. A link is established whenever one of the radios can intelligibly receive the signal
transmitted by the other radio and deconstructed if it cannot. When both can intelligibly receive
signals from one another’s radio, a bidirectional link is established. The range is now computed
using the values of their radio parameters over the horizontal distance (line-of-sight) between
two nodes. The radio parameters include, but are not limited to, radio frequency, transmitting
power, and receiving sensitivity. Computing the range is performed by the range model (RM)
component of the MANE software system. The RM component relies on the Geodesy
Foundation Classes (GFC) (4) to calculate the geodetic distances that are needed in the
determination of the network connectivity between a pair of two nodes.

The ARL Topodef™ tool also calculates the range between a pair of every two nodes to
determine a possible communication link, which is necessary for the creation of a network
topology. The tool then extracts the time-dependent geodetic positions of each node from the

2

generated network topologies and records them in the log files. Providing the MANE software
system with these log files should recreate the same network topology in the test bed as they
have been designed and verified. Therefore, having consistent results of geodesic distances
calculated in the tool and in the MANE software system is imperative for a successful emulation
of a dynamic MANET as intended.

To achieve this objective, the same algorithm and its implementation for calculating the distance
between two geodetic locations should be used in the ARL Topodef™ tool and in the MANE
system. The implementation of this solution has two options: (1) selecting, implementing, and
integrating an appropriate algorithm into the tool and in the MANE system, or (2) using an
implementation that has already been integrated in the MANE system. Between the two options,
the latter requires lesser effort by leaving the MANE software system intact and by creating a
Python (5) extension to the GFC library, which consists of C++ classes.

1.2 Scope

This report describes the successful development of the pyGFC module, a Python extension that
enables the integration and use of C++ classes and methods in a Python application, the ARL
Topodef™ tool. The intended purposes of this report are to:

 Describe and discuss the method used in the development of the pyGFC module

 Identify other development tools and methods for creating Python extensions to C++

 Document the application programming interfaces of the pyGFC module

The rest of this report is organized in the order of its intended purposes. The next section,
section 2, presents and discusses the method that was used to create the pyGFC module and
briefly describes other development tools and methods for creating Python extensions to C++

libraries. Section 3 summarizes the findings and concludes the report.

1.3 Method

The development of the pyGFC module used software development tools that came with the Red
Hat Enterprise operating system and on the information, tutorials, and usage instructions that
were available on the Web. An objective of the development was to minimize the development
effort, the modification to the host environment, and the costs of administrative overhead
associated with the acquisition, installation, and configuration of additional software systems.

3

2. The pyGFC Module Development

 The pyGFC module was created on a computer running the Red Hat Enterprise Linux®
operating system. All the tools needed for the creation of the module were already
available in the host: (i) the GFC source code, (ii) the SWIG command, and (iii) the ar

archive program, and (iv) the C++ compiler.

 The GFC files came with the MANE software system, and the last two were already
included in the Linux OS packages. The SWIG command whose name was derived from its
longer name reflecting its functionality: the Simplified Wrapper and Interface Generator
(SWIG) development tool. SWIG facilitates the use of C/C++ functionality from other
languages among them is the Python programming language. It is usually included in
Linux and Cygwin (6) distributions and also available separately for downloading and
installation in other operating environments, e.g., Microsoft Windows® operating systems
and Minimalist GNU for Windows (MinGW) (7).

 The ar archive program was used to organize and combine multiple files into a single file, a
library. The C++ compiler was used to translate the C++ source files into object code and to
create the shared library needed by the pyGFC module.

2.1 Platform Identification and Tool Versions

The information about the platform and the version of the tool was retrieved using the following
commands and options that were typed into a console window.

/bin/uname -r -o 2.6.18-8.el5 GNU/Linux

/usr/bin/c++ --version c++ (GCC) 4.1.1 20070105 (Red Hat 4.1.1-52)

/usr/bin/ar --version GNU ar 2.17.50.0.6-2.el5 20061020

/usr/bin/swig -version SWIG Version 1.3.29

The version of the GFC files was embedded in the source files, and they were the same although
they had different modification time:

CEarth.cpp Revision: 1.1.1.1 Modtime: 9/01/98 9:56p

CEarthCoordinate.cpp Revision: 1.1.1.1 Modtime: 2/07/98 10:34a

CPolarCoordinate.cpp Revision: 1.1.1.1 Modtime: 2/07/98 10:35a

2.2 Files and Directories

The development of the pyGFC module using the SWIG command required the creation of the
following files:

4

 The pyGFC.cpp file and its corresponding header file, pyGFC.h. The files define the
GFCCoord class interfacing directly with the GFC library to calculate geodetic distances
and providing Python applications a way to use geodetic computing services. Although
these two files were not required by SWIG, they were custom-created to support the use of
the GFC library in the ARL Topodef™ tool and other Python applications that dealt with
geodetic coordinates.

 The pyGFC.i interface file. The contents of the pyGFC.i file specify the required header
files for the creation of the wrapper file and expose all the functions of the GFC library, the
GFCCoord class, and the error functions that were available in the standard C math library,
but excluded from the Python math module. The SWIG command then followed the
specifications in the pyGFC.i file to create two files: a Python file and a C++ file. The C++

file wraps the GFC library, and the Python file provides transparent functionality of the
GFC library in Python applications.

The three files were placed in the pygfc directory, which also had the GFC subdirectory
containing the original GFC source code as shown below:

 pygfc

  pyGFC.i
  pyGFC.h
  pyGFC.cpp
  GFC
  CMath.inl
  CMath.hpp
  CEarth.hpp
  GFC.h
  CPolarCoordinate.cpp
  CEarthCoordinate.cpp
  CEarth.cpp

2.3 Procedure

The procedure for creating the pyGFC module consisted of five steps. Each step produced one or
more files, which were then needed for subsequent steps. Figure 1 illustrates the procedure by
showing connected block diagrams of processes and their required input and output files. At the
end, only two files are needed by a Python application: the shared library file _pyGFC.so and the
Python wrapper file pyGFC.py.

5

Figure 1. Procedure for creating the pyGFC module.

 Step 1: Creating the GFC library using the C++ compiler and the ar commands:

Figure 2. Creating the GFC library.

 Step 2: Creating the pyGFC.cpp file, its corresponding pyGFC.h file, and the pyGFC.i
interface file using a text editor, e.g., vi. The pyGFC.i file contains the directives for the

SWIG command: the header files that are needed by the wrapper file and the interfaces that
are made available to a Python application. In this development, the interfaces are
specified in the pyGFC.h, which is then included in the pyGFC.i. Appendix B lists the
source code of these files.

 Step 3: Creating wrapper files using the SWIG command. SWIG took in the pyGFC.i file
and produced two files: the pyGFC.py and the pyGFC_wrap.cxx files.

6

Figure 3. Generating wrapper files.

 Step 4: Compiling the pyGFC_wrap.cxx and the pyGFC.cpp files using :

Figure 4. Compiling the wrapper files.

 Step 5: Creating the pyGFC library using the C++ compiler:

Figure 5. Creating the shared library.

2.4 Result & Discussion

The development of the pyGFC module was straightforward and relatively smooth because the
interfaces to the GFC library were simple, and throughout the process, only a minor syntactical
error in the SWIG-generated pyGFC_wrap.cxx file was encountered and easily fixed. The
following lines show the errors and how they were fixed:

$ c++ pyGFC_wrap.cxx pyGFC.cpp -I/usr/local/include/python2.5 -I./GFC -I. -c
pyGFC_wrap.cxx: In function ‘int SWIG_Python_ConvertFunctionPtr(PyObject*, void**, swig_type_info*)’:

pyGFC_wrap.cxx:2051: error: invalid conversion from ‘const char*’ to ‘char*’

pyGFC_wrap.cxx: In function ‘void SWIG_Python_FixMethods(PyMethodDef*, swig_const_info*,
swig_type_info**, swig_type_info**)’:

pyGFC_wrap.cxx:7961: error: invalid conversion from ‘const char*’ to ‘char*’

These two errors that occurred in line numbers 2051 and 7961 were of the same category. Fixing
them required the use of a text editor to insert the expression (char *) to the lines that caused
the error as shown in the following two lines:

2051 char *doc = (char *)(((PyCFunctionObject *)obj) -> m_ml -> ml_doc);

7961 char *c = (char *) methods[i].ml_doc;

7

Once the problem had been fixed, the process continued without a hitch. The final phase was to
test the newly created pyGFC module in a Python development environment, the Python’s
Integrated Development Environment (IDLE). Figure 6 is the screen dump of a Python
interactive session that imported the pyGFC module, showing four different actions performed to
ensure the operability of the module:

 Displaying the contents of the pyGFC module. All the C++ classes defining the GFC library
are available as they are listed on the screen, e.g., CEarth, CEarthCoordinate,

CPolarCoordinate.

 Ensuring that the erf and the erfc functions would work correctly. The sum of erf(x) and
erfc(x) equals 1.0 because erfc(x) = 1 – erf(x) by definition.

 Displaying the attributes and methods of the GFCCoord class; e.g., alt, lat, lon, get_distance.

 Setting two geodetic locations and calculating the distance between them.

8

Figure 6. Results – an interactive session with the pyGFC module.

2.5 Other Development Tools for Creating Python Extensions to C++

In addition to the SWIG development tool, several other open-source tools for creating Python
extensions are available on the Web. They include but are not limited to Boost.Python, PyRex,
PyCXX, and Weave. A brief description of what they are is included in this section. More
detailed description and usage instructions can be obtained from their respective Web sites
(appendix A).

9

 Boost.Python emerges as a competent development tool for the development of Python
extensions to C/C++. Using Boost.Python requires extensive knowledge of the C++

programming language, especially the C++ templates.

 PyCXX appears to be a capable development tool whose principal goal is to ease the
writing of Python extensions.

 PyRex enables the mixing of Python and C/C++ in a Python program using its own
language which is very similar to Python and C; therefore, PyRex itself is a computer
language.

 Weave also enables the mixing C/C++ code in a Python program to improve its
performance and to generate Python extensions.

3. Summary

The creation of the pyGFC module using SWIG was relative easy on a Linux® environment
because the interfaces to the GFC library were simple. The described multi-step procedure is
expected to reproduce the same results in a Linux-like environment; for example, Cygwin and
MSYS/MinGW environments.

10

4. References

1. Ivanic, Natalie; et al. A Scalable Test Bed for Emulating Wireless Mobile Ad-hoc Networks.
submitted to MILCOM’2008 for inclusion in the conference proceeding.

2. Networks and Communications Systems Branch, “Mobile Ad-hoc Network Emulator
(MANE),” The U.S. Naval Research Laboratory, Code 5520, 4555 Overlook Ave., SW,
Washington, DC 20375-5337. URL: http://cs.itd.nrl.navy.mil/work/mane (accessed date 21
July 2008)

3. Nguyen, Binh. The ARL Topodef™ Tool for Designing Mobile Ad-Hoc Network
Topologies to Support Emulation. Military Communications Conference, 2007. MILCOM
2007. IEEE 29-31 Oct. 2007.

4. Blackburn, Sam. The Geodesy Foundation Classes, URL:
http://www.samblackburn.com/gfc/, E-Mail: sam_blackburn@pobox.com (accessed 21 July
2008)

5. The Python programming language, URL: http://www.python.org (accessed 22 July 2008).

6. Cygwin, a Linux-like environment for Windows, URL: http://cygwin.com (accessed date 29
July 2008)

7. Minimalist GNU for Windows (MinGW), URL: http://www.mingw.org (accessed date 29
July 2008)

11

Appendix A. URL of Development Tools

SWIG http://www.swig.org

PyRex http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex

Boost.Python http://www.boost.org

PyCXX http://sourceforge.net/projects/cxx/

Weave http://www.scipy.org/Weave

12

INTENTIONALLY LEFT BLANK.

13

Appendix B. Source Files

Table B-1. The pyGFC.h file.

#ifndef __PYGFC__
#define __PYGFC__

#include <iostream>
#include "GFC.h"

using namespace std;

#define ONE_MINUTE_METERS (1852.0)
#define ONE_DEGREE_METERS (60.0 * ONE_MINUTE_METERS)
#define COORD_STRLEN (64)

class GFCCoord
{
public:
 GFCCoord(const GFCCoord *);
 GFCCoord(double lat=0.0, double lon=0.0, double alt=0.0);
 virtual ~GFCCoord();

 void set(const GFCCoord *);
 void set(double , double , double);

 void print_coords();
 char *get_coords_str();
 double get_distance(const GFCCoord *);
 double get_distance(const GFCCoord *, const GFCCoord *);

 double estimate_latitude_coord(GFCCoord *, double);
 double estimate_longitude_coord(GFCCoord *, double);
 GFCCoord *estimate_southeast_coords(double, double);

 double lat;
 double lon;
 double alt;

private:
 CEarth *earth;
 char *cstr;
};

#endif

14

Table B-2. The pyGFC.cpp file.

#include "pyGFC.h"

GFCCoord::GFCCoord(double lat, double lon, double alt)
{
 this->lat = lat;
 this->lon = lon;
 this->alt = alt;
 this->earth = new CEarth();
 this->cstr = (char *)malloc(COORD_STRLEN);
}
GFCCoord::GFCCoord(const GFCCoord * p)
{
 this->lat = p->lat;
 this->lon = p->lon;
 this->alt = p->alt;
 this->earth = new CEarth();
 this->cstr = (char *)malloc(COORD_STRLEN);
}
GFCCoord::~GFCCoord()
{
 delete this->earth;
 delete this->cstr;
}

void GFCCoord::set(const GFCCoord * p)
{
 this->lat = p->lat;
 this->lon = p->lon;
 this->alt = p->alt;
}

void GFCCoord::set(double lat, double lon, double alt)
{
 this->lat = lat;
 this->lon = lon;
 this->alt = alt;
}

void GFCCoord::print_coords()
{
 cout << "("
 << this->lat << ","
 << this->lon << ","
 << this->alt
 << ")"
 << endl;
}

double GFCCoord::get_distance(const GFCCoord *a, const GFCCoord *b)
{
 /**
 This code is taken from the NRL-designed RangeDrop::getDistance()
 **/
 CPolarCoordinate here, there;
 here.SetUpDownAngleInDegrees(a->lat);
 here.SetLeftRightAngleInDegrees(a->lon);
 here.SetDistanceFromSurfaceInMeters(a->alt);

 there.SetUpDownAngleInDegrees(b->lat);
 there.SetLeftRightAngleInDegrees(b->lon);
 there.SetDistanceFromSurfaceInMeters(b->alt);

 return this->earth->GetLineOfSightDistance(here,there);
}

char *GFCCoord::get_coords_str()
{
 sprintf(this->cstr, "(%.8f, %.8f, %8f)", this->lat, this->lon, this->alt);
 return this->cstr;
}

double GFCCoord::get_distance(const GFCCoord * p)
{
 return this->get_distance(this, p);
}

double GFCCoord::estimate_latitude_coord(GFCCoord *p, double target_distance)

15

{
 /*** estimate the latitude that is SOUTH of where p is */
 CPolarCoordinate here;
 here.SetUpDownAngleInDegrees(p->lat);
 here.SetLeftRightAngleInDegrees(p->lon);
 here.SetDistanceFromSurfaceInMeters(p->alt);

 GFCCoord *e = new GFCCoord(p);

 /* estimate the latitude then adjust it later. */
 e->lat = p->lat - target_distance/(double)ONE_DEGREE_METERS;
 CPolarCoordinate there;
 there.SetUpDownAngleInDegrees(e->lat);
 there.SetLeftRightAngleInDegrees(e->lon);
 there.SetDistanceFromSurfaceInMeters(e->alt);

 /* dlat = value used for incrementingly searching for the closest value */
 double dlat = -0.010/ONE_DEGREE_METERS;
 double est_dist = this->earth->GetLineOfSightDistance(here,there);
 if (est_dist > target_distance) dlat = -1.0 * dlat;

 while (est_dist < target_distance)
 {
 e->lat += dlat;
 there.SetUpDownAngleInDegrees(e->lat);
 est_dist = earth->GetLineOfSightDistance(here,there);
 }
 return e->lat;
}

double GFCCoord::estimate_longitude_coord(GFCCoord *p, double target_distance)
{
 /*** estimate the longitude that is EAST of where p is */

 CPolarCoordinate here;
 here.SetUpDownAngleInDegrees(p->lat);
 here.SetLeftRightAngleInDegrees(p->lon);
 here.SetDistanceFromSurfaceInMeters(p->alt);

 GFCCoord *e = new GFCCoord(p);

 /* estimate the longitude then adjust it later. */
 e->lon = p->lon + target_distance/(double)ONE_DEGREE_METERS;

 CPolarCoordinate there;
 there.SetUpDownAngleInDegrees(e->lat);
 there.SetLeftRightAngleInDegrees(e->lon);
 there.SetDistanceFromSurfaceInMeters(e->alt);

 double dlon = 0.010/ONE_DEGREE_METERS;
 double est_dist = this->earth->GetLineOfSightDistance(here,there);
 if (est_dist > target_distance) dlon = -1.0 * dlon;

 while (est_dist < target_distance)
 {
 e->lon += dlon;
 there.SetLeftRightAngleInDegrees(e->lon);
 est_dist = earth->GetLineOfSightDistance(here,there);
 }
 return e->lon;
}

GFCCoord * GFCCoord::estimate_southeast_coords(double width, double height)
{
 /* estimate and return the SE corner given w, h in meters
 width & height should be less than 20 km.
 caveats: this implementation does not handle any location on earth.
 */
 CPolarCoordinate here;
 here.SetUpDownAngleInDegrees(this->lat);
 here.SetLeftRightAngleInDegrees(this->lon);
 here.SetDistanceFromSurfaceInMeters(this->alt);

 GFCCoord *e = new GFCCoord(this);

 /* estimate the latitude then adjust it later. */
 e->lat = this->lat - height/ONE_DEGREE_METERS;
 CPolarCoordinate there;
 there.SetUpDownAngleInDegrees(e->lat);
 there.SetLeftRightAngleInDegrees(e->lon);
 there.SetDistanceFromSurfaceInMeters(e->alt);

16

 /* dlat = value used for incrementingly searching for the closest value */
 double dlat = -0.010/ONE_DEGREE_METERS;
 double est_dist = this->earth->GetLineOfSightDistance(here,there);
 if (est_dist > height) dlat = -1.0 * dlat;

 while (est_dist < height)
 {
 e->lat += dlat;
 there.SetUpDownAngleInDegrees(e->lat);
 est_dist = earth->GetLineOfSightDistance(here,there);
 }

 double saved_lat = e->lat;
 e->lat = this->lat;
 there.SetUpDownAngleInDegrees(e->lat);

 e->lon = this->lon + width/ONE_DEGREE_METERS;
 double dlon = 0.010/ONE_DEGREE_METERS;

 est_dist = this->earth->GetLineOfSightDistance(here,there);
 if (est_dist > width) dlon = -1.0 * dlon;

 while (est_dist < width)
 {
 e->lon += dlon;
 there.SetLeftRightAngleInDegrees(e->lon);
 est_dist = earth->GetLineOfSightDistance(here,there);
 }
 e->lat = saved_lat;
 return e;

}

17

Table B-3. The pyGFC.i file.

%module pyGFC
%{
#include "pyGFC.h"
%}

%include "GFC.h"
%include "pyGFC.h"

// error functions from the math lib.
extern double erf(double x);
extern double erfc(double x);
extern float erff(float x);
extern float erfcf(float x);

18

Disclaimer

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents. Citation of manufacturer’s trade names
does not constitute an official endorsement or approval of the use thereof.

19

NO OF
COPIES ORGANIZATION

 1 ADMNSTR
 ELEC DEFNS TECHL INFO CTR
 ATTN DTIC OCP
 8725 JOHN J KINGMAN RD STE 0944
 FT BELVOIR VA 22060-6218

 1 DARPA
 ATTN IXO S WELBY
 3701 N FAIRFAX DR
 ARLINGTON VA 22203-1714

 1 CD OFC OF THE SECY OF DEFNS
 ATTN ODDRE (R&AT)
 THE PENTAGON
 WASHINGTON DC 20301-3080

 1 US ARMY RSRCH DEV AND ENGRG
 CMND
 ARMAMENT RSRCH DEV AND
 ENGRG CTR
 ARMAMENT ENGRG AND
 TECHNLGY CTR
 ATTN AMSRD AAR AEF T J MATTS
 BLDG 305
 ABERDEEN PROVING GROUND MD
 21005-5001

 1 US ARMY TRADOC
 BATTLE LAB INTEGRATION &
 TECHL DIRCTRT
 ATTN ATCD B
 10 WHISTLER LANE
 FT MONROE VA 23651-5850

 1 PM TIMS, PROFILER (MMS-P)
 AN/TMQ-52
 ATTN B GRIFFIES
 BUILDING 563
 FT MONMOUTH NJ 07703

 1 US ARMY INFO SYS ENGRG CMND
 ATTN AMSEL IE TD F JENIA
 FT HUACHUCA AZ 85613-5300

 1 COMMANDER
 US ARMY RDECOM
 ATTN AMSRD AMR
 W C MCCORKLE
 5400 FOWLER RD
 REDSTONE ARSENAL AL 35898-5000

NO OF
COPIES ORGANIZATION

 1 US GOVERNMENT PRINT OFF
 DEPOSITORY RECEIVING SECTION
 ATTN MAIL STOP IDAD J TATE
 732 NORTH CAPITOL ST NW
 WASHINGTON DC 20402

 1 US ARMY RSRCH LAB
 ATTN AMSRD ARL CI OK TP
 TECHL LIB T LANDFRIED
 BLDG 4600
 ABERDEEN PROVING GROUND MD
 21005-5066

 1 DIRECTOR
 US ARMY RSRCH LAB
 ATTN AMSRD ARL RO EV
 W D BACH
 PO BOX 12211
 RESEARCH TRIANGLE PARK NC
 27709

 1 SAM_BLACKBURN@POBOX.COM
 ELEC

 8 US ARMY RSRCH LAB
 ATTN AMSRD ARL CI N G RACINE
 ATTN AMSRD ARL CI NT
 B NGUYEN
 ATTN AMSRD ARL CI NT B RIVERA
 ATTN AMSRD ARL CI NT N IVANIC
 ATTN AMSRD ARL CI NT R HARDY
 ATTN AMSRD ARL CI OK PE
 TECHL PUB
 ATTN AMSRD ARL CI OK TL
 TECHL LIB
 ATTN IMNE ALC IMS
 MAIL & RECORDS MGMT
 ADELPHI MD 20783-1197

Total: 20 (2 ELEC, 1 CD, 17 HC)

20

INTENTIONALLY LEFT BLANK

